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1. Introduction 
 

Spent fuels discharged from nuclear reactors must remain under wet storage into pools awaiting their 

temperature and radioactivity emission to reach safety values for transportation to the final repository. 

The temperature and radioactivity levels vary according to each country regulation [1]. The water 

temperature between 298 K and 310 K in a spent fuel pool (SFP) is maintained by an external cooling 

system (ECS). Thermal studies must consider hypothetical scenarios of ECS breakdown that would 

provoke overheating and structural damage in the spent fuels (SF) stored. 

 

Based on the idea of using reprocessed nuclear fuels in conjunction with UO2 in a PWR [2]-[4], this work 

evaluates the water boiling time (Tb) in the ECS collapse scenario. UO2, (TRU-Th)O2, (U-Th)O2, and 

MOX spent fuels were discharged from PWR. Three loading patterns of these kinds of SF assemblies 

were considered: a single-type loading of UO2, and mixed loadings containing either a quarter or one 

third of reprocessed fuels. The modelled SFP consists on the smallest arrangement of assemblies (unit 

of repetition, UR) that represents each loading pattern of a PWR’s SFP. The aim is to determine the 

influence on Tb of setting the top of the SFP either as adiabatic or non-adiabatic wall.  

 

The simulations were implemented in CFX Ansys and OpenFOAM© codes, and the preliminary results 

appear to be highly dependent on the boundary condition. Simulations considering the top of the SFP as 

non-adiabatic yield higher Tb values. 

 
 

2. Methodology 
 

The heat sources in simulations are the SF and were derived from previous studies [5]. The main 

characteristics of SFs of interest in the present work, including the final amount of fissile material, the burnup 

and the operation time of the reactor were obtained from [5], and are listed in following: 

• UO2: enriched to 4.3 w/o 235U/U; burnup of 48 GWd/tHM during 3.61 years and 1.634% of final 

amount of fissile material. 

• (TRU-Th)O2: fuel composed of 10 % of Th and 90 % of reprocessed fuel by UREX+, with 9.53 % of 

fissile material; burnup of 48 GWd/tHM during 3.61 years and 6.657 % of final amount of fissile 

material. 

• MOX: enriched to 0.25 w/o 235U/U; burn-up of 48 GWd/tHM during 3.61 years and 3.375 % of final 

amount of fissile material. 

• (U-Th)O2: Enriched to 4.869 w/o 235U/U; burn-up of 48 GWd/tHM during 3.61 years and of 2.084 
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%  final amount of fissile material. 
 

Each assembly of SF was modelled as a solid cylinder, and only a single UR is represented. To determine the 

volume of water in the model, the proportion SF/water in the real pool of the PWR fully filled with assemblies 

was adopted, i.e., 0.0508 [6]. 

 

The following studies were conducted considering the modelled SFP loaded according to the loading pattern 

1:2: 

• Case I: three cylinders of (TRU-Th)O2 and six of UO2; 

• Case II: three cylinders of (U-Th)O2 and six of UO2; 

• Case III: three cylinders of MOX and six of UO2; 

• Case IV: nine cylinders of UO2. 

For the SFP filled according to the loading pattern 1:3: 

• Case V: one cylinder of (TRU-Th)O2 and three of UO2; 

• Case VI: one cylinder of (U-Th)O2 and three of UO2; 

• Case VII: one cylinder of MOX and three of UO2; 

• Case VIII: four cylinders of UO2. 
 

Fig. 1 shows an example of the modelled SFP containing the assemblies of SF. 

 

 
Figure 1: The modelled SFP containing blue cylinders that represent assemblies of (TRU-Th)O2 or (U-

Th)O2 or MOX, and grey cylinders representing assemblies of UO2.   

 

The initial and boundary conditions are shown in Fig. 2. They are the same for the loading pattern 1:2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The boundary and initial conditions of the model. 
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All the simulated cases were also carried out setting the top of the SFP as non-adiabatic. 

 

 

3. Preliminary Results 

 

Preliminary results show that both Ansys CFX and OpenFOAM yield Tb values ranging from 4.05 h to 5.97 

h, when all the SFP walls were set as adiabatic. Contrarily, when the top was set as non-adiabatic, Tb extended 

to more than 12 h, for most simulated cases.  

Fig. 3 shows the temporal behaviour of the water temperature for the loading pattern 1:3. 

 

 
Figure 3: Water temperature behaviour when SFP is loaded according to the pattern 1:3. 
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