

Estudo de Viabilidade para Produção de uma Fonte Radioativa de Br-82 para Medida de Velocidade Superficial em Sistemas Monofásicos

L. A. A. G. Silva¹, C. R. A. Carvalho, C. M. Barbosa, C. M. Salgado, Cesar Raitz²

 ¹lucasalecsander10@poli.ufrj.br, Departamento de Engenharia Nuclear, Escola Politécnica, UFRJ
²cesar.raitz-junior@bolsista.ien.gov.br, SEINS, Instituto de Engenharia Nuclear, CNEN, Rio de Janeiro, 21941-906

1. Introdução

Todos os materiais capazes de emitir radiação ionizante são fontes radioativas. Radiação ionizante tem a capacidade de interagir com a matéria, arrancando elétrons de seus átomos e modificando suas moléculas [1]. Esses materiais são gerados através de ativação neutrônica, ativadas pelo bombardeamento com nêutrons ou fótons de alta energia em núcleos de isótopos [2]. O encapsulamento da fonte radioativa evita a contaminação ou perda da substância radioativa num sistema de fluxo monofásico [3]. Isto permite o uso da técnica de Rastreamento de Partícula Radioativa (RPR) de forma segura [4]. Neste trabalho, foi realizado um estudo do sal NaBr e da atividade e densidade de partículas radioativas com diferentes geometrias e materiais de encapsulamento. Um sistema de detecção contendo partícula radioativa (sal + cápsula) e detector de NaI foi simulada com o programa MCNPX.

2. Metodologia

Inicialmente foi feita uma Análise por Fluorescência de Raios-X para avaliação da pureza de uma amostra de sal NaBr P.A. da marca Vetec que apresentava, em seu rótulo, uma pureza de 99,5%.

Em seguida, calculamos as densidades de partículas radioativas com diferentes geometrias. A densidade da partícula deve ser a mesma que a do fluído investigado com a técnica de RPR. Para calcular a densidade total do material foi necessário especificar a geometria do encapsulamento e da fonte, combinando as fórmulas de densidade dos dois materiais, uma vez que suas massas são desconhecidas. E diante disso, chegamos à fórmula final para densidade total dos materiais que não depende diretamente do valor de suas respectivas massas como na Eq. 1.

$$\rho_T = \rho_1 + (\rho_2 - \rho_1) \frac{V_2}{V_T},\tag{1}$$

onde ρ_1 corresponde à densidade do material do encapsulamento, ρ_2 corresponde à densidade do NaBr, V_2 é o volume do NaBr e V_T é referente ao volume total do material do encapsulamento e do NaBr.

As geometrias escolhidas foram: uma esfera com raio de 2 cm e um cubo com lado de 2 cm. Os materiais para encapsulamento são o PLA e Resina Epóxi, com densidades de 1,43 e 1,25 g/cm³, respectivamente. Estes materiais foram escolhidos pela facilidade de fabricação das partículas [5]. O núcleo das partículas deve ser uma esfera sal NaBr, com densidade 3,30 g/cm³, e raios de 1 e 5 mm.

A próxima etapa do trabalho foi simular um sistema de detecção simples, contendo uma partícula radioativa na origem, com um detector cilíndrico de NaI (TI) de $2^{"} \times 2^{"}$, localizado a 8 cm da fonte.

Consideramos que a partícula foi previamente ativada no reator nuclear e que, pela absorção de nêutrons lentos, ocorreu a reação: NaBr $(n, \gamma) \rightarrow {}^{24}Na + {}^{82}Br$

Nas simulações, consideramos apenas as principais emissões γ do ⁸²Br, que são 554 keV com probabilidade 70,6% e 776 keV com probabilidade 83,4%, com emissão isotrópica dentro da esfera de sal. Para fazer as simulações, usamos o programa MCNPX que utiliza o método de Monte Carlo para simular o transporte e interação da radiação com a matéria. Foram realizadas dez simulações, uma para cada tipo de partícula e duas apenas com a esfera de sal. Calculamos a intensidade pela soma das contagens dos dois picos do espectro, como se pode observar na Figura 1.

Figura 1: Espectro da fonte pontual de ⁸²Br com encapsulamento.

3. Resultados e discussão

A Análise por Fluorescência de Raios-X apresentou um bom detalhamento acerca dos traços de elementos presentes na amostra indicando que o sal apresentou uma pureza próxima da indicada no rótulo da embalagem (Tabela 1).

Elementos e	Especificação	Análise por	
compostos	da Vetec	fluorescência	
NaBr	99,50%	99,32%	

Tabela	1:	Compa	ração	de	concentrações

Impurezas 0,50%	0,68%
-----------------	-------

As densidades variam dentro de um largo intervalo de valores, mais adequado para fluídos pesados, e não para águas leves ou soluções salinas.

Material	Formato	NaBr com R=1mm [g/cm ³]	NaBr com R=5mm [g/cm³]
PLA	Cubo	1,434	2,41
PLA	Esfera	1,432	1,664
Epóxi	Cubo	1,259	2,323
Epóxi	Esfera	1,252	1,506
Some	ente NaBr	3,300	3,300

Tabela 2: Densidade de cada partícula.

O próximo passo foi estimar a atividade de cada partícula considerando que todos os átomos de Br fossem ativados durante o processo de ativação neutrônica. A atividade específica do ⁸²Br é 4.07×10^{16} Bq/g. A atividade estimada para partículas com raios internos de R = 1 mm é 4.366×10^{14} Bq, e para partículas com R = 5 mm é 540.2×10^{14} Bq. O Sistema de detecção contendo um detector de NaI foi simulado com o programa MCNPX. A partir dos resultados, foram calculados os números de fótons do decaimento do ⁸²Br, que chegavam ao detector, por segundo, como pode ser observado na Tabela 3.

Material	Geometria	NaBr (R=1mm) [10 ¹² cts/s]	NaBr (R=5mm) [10 ¹² cts/s]
PLA	Cubo	1.10	136
PLA	Esfera	1.09	135
Epóxi	Cubo	1.10	136
Epóxi	Esfera	1.11	137
NaBr (sem encapsulamento)		1.22	151

Tabela 3: Atividades estimadas para o experimento simulado.

4. Conclusões

As partículas propostas podem ser utilizadas em experimentos de RPR com densidades de fluido de cerca de 1,2 a 2,4 g/cm³. Portanto, não é recomendado para fluidos leves, como água ou água salgada. Trabalhos

futuros irão investigar a possibilidade de fazer partículas mais leves e simular as partículas em um experimento RPR, incluindo os raios gama emitidos no decaimento do isótopo ²⁴Na nas simulações Monte Carlo.

Agradecimentos

Os autores agradecem ao CNPq pelo auxílio financeiro e ao Instituto de Engenharia Nuclear pelo uso das instalações e laboratórios.

Referências

[1] NOUAILHETAS, YANNICK *et al. Radiações Ionizantes e a vida*. Rio de Janeiro: CNEN, (2005).

[2] NO, IAEA TECDOC Series. *Practical aspects of operating a neutron activation analysis laboratory* (1990).

[3] TIEZZI, Rodrigo. Desenvolvimento de fontes radioativas seladas imobilizadas em resinas epóxi

para verificação de detectores utilizados em Medicina Nuclear. 2016. Tese de Doutorado.

Dissertação de mestrado, Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, SP.

[4] BODE, P. et al. Practical aspects of operating a neutron activation analysis laboratory. IAEA

Techdoc, v. 564, p. 1-251, 1990.

[5] OLIVEIRA, Janaíne Mônica de. "Obtenção e caracterização de compósitos biodegradáveis de Poliácido Láctico (PLA) reforçados com fibras de curauá" (2016).