

Avaliação da Criticalidade do Reator ELECTRA em Função do Raio do Refletor

Ana Luiza Pereira Oliveira¹, Clarysson Alberto Mello da Silva ²

¹pereiraoliveiraana@gmail.com, ²clarysson@nuclear.ufmg.br, Departamento de Engenharia Nuclear, Av. Antônio Carlos, 6627, Campus UFMG, PCA01, Anexo Engenharia, Pampulha, 31270-90, Belo Horizonte, MG, Brasil

1. Introdução

Os reatores nucleares rápidos fazem parte da IV Geração de Reatores Nucleares, estabelecida em 2000 pelo *Generation IV International Forum (GIF)*, visando a cooperação no desenvolvimento e pesquisas para otimização dos reatores já existentes. Os principais objetivos dessa nova geração de reatores, são (a) utilização mais eficiente dos recursos naturais; (b) melhorar a segurança nuclear; (c) melhorar a resistência à proliferação; (d) minimizar a produção de combustível queimado; e (e) diminuir o custo da construção e operação das centrais nucleares [1].

Nesse contexto, o ELECTRA (*European Lead-Cooled Training Reactor*) é um reator rápido de baixa potência (0,5 MWth), o qual além de apresentar a devida segurança inerente, possibilita o uso de combustíveis reprocessados, como o (Pu _{0,4}, Zr _{0,6}) N [2]. Vantagens não só econômicas, como também ecológicas, que o tornam uma opção inteligente para auxiliar a suprir a demanda crescente de energia mediante o emprego de fontes alternativas e diversificadas.

O combustível utilizado no estudo, (Pu $_{0,4}$, Zr $_{0,6}$) N, foi desenvolvido pelo *Royal Institute of Techonology*, com a *Uppsala University* e *a Chalmers of Technology*, na Suécia [2]. Ele é proveniente do combustível UOX do reator de água pressurizada, com queima de 43 GWd/t, resfriado por 4 anos antes do reprocessamento e por 2 anos de armazenamento antes de carregar para o núcleo [2]. Os combustíveis de Nitreto apresentam atrativas vantagens, como alta condutividade térmica, baixa dilatação, baixa liberação de gás e boa compatibilidade térmica com o refrigerante em questão [3].

Quanto ao refrigerante/refletor (chumbo), destacam-se a baixa absorção de nêutrons, o ponto de fusão relativamente baixo (327°C) e o ponto de ebulição elevado (1740°) [1] [2]. Além disso, ele não reage significativamente com a água ou com o ar – ao contrário do sódio, fator que torna o reator mais seguro –, sendo uma escolha conveniente para o refrigerante de um reator rápido, como o ELECTRA.

Neste trabalho, foi realizado um estudo de criticalidade do reator europeu de treinamento refrigerado a chumbo (ELECTRA), em estado estacionário, tendo sido utilizado o MCNPX 2.6.0 (*Monte Carlo N-Particle eXtended*) para o cálculo de criticalidade nuclear. O objetivo do trabalho é verificar a modelagem desenvolvida no código citado para viabilidade de trabalhos futuros.

2. Metodologia

Primeiramente, foi realizada uma revisão bibliográfica sobre a IV Geração de Reatores Rápidos, com foco nos Reatores Rápidos Refrigerados a Metais Líquidos. Como resultado, o reator ELECTRA foi escolhido para uma análise mais aprofundada, por suas vantagens já citadas. O trabalho utilizou o artigo "*Neutronics and Transient Analysis of a Small Fast Reactor Cooled with Natural Circulation of Lead*." [2] como principal referência teórica e comparativa.

Trabalhou-se, então, na modelagem do núcleo do reator, considerando as dimensões e composição do modelo do trabalho de referência [2] [4]. A composição de actinídeos do combustível (Pu _{0,4}, Zr _{0,6}) N utilizada é mostrada na Tabela I abaixo.

Actinídeo	Pu 238	Pu ²³⁹	Pu ²⁴⁰	Pu ²⁴¹	Pu ²⁴²	Am ²⁴¹
%	3,5	51,9	23,8	11,7	7,9	1,2
Fonte: adaptado. E. Suvdantsetseg. [2]						

Tabela I: Composição de Actinídeos do Combustível

Para o revestimento das pastilhas, utilizou-se o aço T91 revestido por FeCrAlY [5]. Na Figura 1 a seguir temse o núcleo ativo do reator ELECTRA, plotado para simulação, com raio de refletor igual a 30,0 cm.

Figura 1: Modelo do núcleo do reator, considerando as pastilhas de combustível e o refletor com raio de 30,0 cm, para estudo do impacto do refletor. (a) Plano xy; (b) Plano xz.

A análise de criticalidade em estado estacionário do ELECTRA foi realizada para diferentes valores de raio do refletor, calculando-se o fator de multiplicação efetivo (k_{eff}) e a fração de nêutrons que retorna ao núcleo (f), devido à variação do raio do refletor, calculada segundo a definição de Spriggs et al. [6], conforme Equação (1),

$$f = 1 - \frac{k_c}{k_{eff}} \tag{1}$$

onde k_c é o valor de k_{eff} do reator nu, sem refletor. As diferenças (D) entre os valores obtidos para k_{eff} e *f* foram calculadas pelas Equações (2) e (3) mostradas a seguir:

$$D(pcm) = [k_{eff}(referência) - k_{eff}(MCNPX)] * 10^5$$
⁽²⁾

$$D(\%) = \frac{[f(MCNPX) - f(referência)]}{f(MCNPX)} * 100\%$$
(3)

Ademais, o fator de multiplicação infinito, k_{inf} também foi avaliado. Ele considera um sistema infinito em que não há fuga de nêutrons do reator e, portanto, possui valores maiores do que os valores de k_{eff} . A relação entre os dois parâmetros é dada pela Equação (4),

$$k_{eff} = k_{inf} * P \tag{4}$$

onde P é a probabilidade total de não-fuga do núcleo, que representa a probabilidade de que os nêutrons não escapem do sistema avaliado. O parâmetro P também foi avaliado.

3. Resultados e Discussão

Os resultados das simulações são apresentados nas Tabelas II e III e se mostram coerentes quanto aos valores obtidos no artigo de referência [2] e quanto ao esperado teoricamente.

Raio do Refletor,	k _{eff}			f		
cm	Referência	MCNPX	D, pcm	Referência	MCNPX	D, %
$0,0 \ (k_{eff} = k_c)$	0,77316	0,75055	2261	0,00	0,00	0,00
30,0	0,99083	0,98176	907	0,22	0,24	8,33
50,0	1,06525	1,05985	540	0,27	0,29	6,90
70,0	1,09338	1,08780	558	0,29	0,31	6,45
100,0	1,10725	1,10269	456	0,30	0,32	6,25
130,0	1,11038	1,10493	545	0,30	0,32	6,25
200,0	1,11111	1,10678	433	0,30	0,32	6,25

Tabela II: Fator de Multiplicação Efetivo (k_{eff}) e Fração de Nêutrons (f) que retornam para o Núcleo calculados para Diferentes Raios do Refletor

Tabela III: Fator de Multiplicação Infinito (k_{inf}) calculado para Diferentes Raios do Refletor

Raio do Refletor, cm	k _{inf}	Р	P - 1
$0,0 (k_{\rm eff} = k_{\rm c})$	1,38310	0,54266	0,45734
30,0	1,81581	0,54067	0,45933
50,0	1,46446	0,72371	0,27629
70,0	1,28076	0,84934	0,15066
100,0	1,18580	0,92991	0,07009
130,0	1,16110	0,95162	0,04838
200,0	1,15441	0,95874	0,04126

É evidente que o fator de multiplicação efetivo, k_{eff} , tende a crescer com o aumento do raio do refletor utilizado e que a partir de 100,0 cm o impacto do aumento do raio se torna menos significativo. O fenômeno segue o mesmo padrão para a fração de nêutrons que retorna ao núcleo, *f*. Além disso, o valor de P aumenta com o aumento do raio do refletor, indicando que a probabilidade de que os nêutrons não escapem do núcleo é maior

Ana Luiza Pereira Oliveira, Clarysson Alberto Mello da Silva.

para casos onde o raio do refletor é maior. Quanto às diferenças (D) entre os resultados calculados neste trabalho e aqueles apresentados no artigo de referência [2], verifica-se que a maior diferença relativa ao k_{eff} ocorre para o reator nu, enquanto a menor diferença ocorre para o caso em que o raio do refletor é igual a 200 cm. Em relação à fração *f*, a maior e a menor diferença também estão relacionadas aos casos do reator nu e do raio de 200 cm, respectivamente. Fatos que evidenciam uma tendência de redução das diferenças com o aumento do raio do refletor.

4. Conclusões

O modelo desenvolvido no código MCNP permitiu avaliar a criticalidade do reator ELECTRA, por meio do cálculo do fator de multiplicação efetivo, k_{eff} , do fator de multiplicação infinito (k_{inf}) da fração de nêutrons que retorna ao núcleo, *f*, e verificar os resultados pela comparação com o artigo de referência [2]. Também foi calculado a probabilidade da não fuga do sistema em função do raio do refletor. Os resultados se mostram coerentes e são relevantes por corroborarem com o entendimento do desempenho de reatores rápidos no que tange a criticalidade do reator relacionada às dimensões do refletor.

Quanto à continuidade do trabalho, pretende-se desenvolver estudos ligados a queima e transmutação de diferentes tipos de combustíveis, avaliando também outros parâmetros neutrônicos do sistema.

Agradecimentos

Os autores agradecem à Professora Claubia Pereira Bezerra Lima por executar as simulações no código MCNPX 2.6.0 e agradecem as agências de fomento à pesquisa: FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais), CAPES (Coordenação de Aperfeiçoamentos de Pessoal de Nível Superior), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) e CNEN (Comissão Nacional de Energia Nuclear).

Referências

[1] W. S. Bastos. *Uma introdução a reatores rápidos de IV geração*. Instituto de Engenharia Nuclear – CNEN. Rio de Janeiro, Brasil (2002).

[2] E. Suvdantsetseg, "Neutronics and Transient Analysis of a Small Fast Reactor Cooled with Natural Circulation of Lead.", Royal Institute of Techonology, Stockholm, Sweden (2014).

[3] C. A. C. Renke, J. L. Batista, M. Waintraub, W. S. Bastos, L. O. B. Aghima. *Análise Neutrônica Concernente à Utilização de Combustível Nitreto de Urânio/Plutônio em Reatores a Nêutrons Rápidos.* Instituto de Engenharia Nuclear – CNEN. Rio de Janeiro, Brasil (1991).

[4] I. P. Królikowski, J. Cetnar, "Neutronic and Thermal-Hydraulic Coupling for 3D reactor core modeling combining MCB and fluent", Faculty of Energy and Fuels, AGH University of Science and Technology, Krakow, Poland (2015).

[5] A. Weisenburger, A. Heinzel, G. Müller, H. Muscher, A. Rousanov. "*T91 cladding tubes with and without modified FeCrAlY coatings exposed in LBE at different flow, stress and temperature conditions*". Journal of Nuclear Materials, v. 3, p. 376 (2008).

[6] G. D. Spriggs et al. Two-Region Kinetic Model for Reflected Reactors. Ann. Nucl. Energ., 24 (1997).