

Experimental Investigations of Additives on the thermal conductivity UO₂ Pellets

D. M. Camarano¹, F. A. Mansur² and A.M.M. dos Santos¹

Nuclear Technology Development Center, CNEN, Belo Horizonte, MG, Brazil, 31270-901 ¹dmc@cdtn.br, ¹amms@cdtn.br ²fametalurgica@gmail.com

1. Introduction

The UO₂ conventional fuel used in PWR reactors is not a good conductor of heat, which generates an elevated temperature gradient in the UO₂ pellets, leading to premature fuel degradation. The thermal conductivity of UO₂ depends on microstructural parameters (e.g.: porosity and grain size) and atomscale parameters (e.g.: vacancies and defects point). It is possible to influence the thermal conductivity by these parameters with add additives to the UO_2 matrix. The main incentive of the addition of small amounts of oxides to UO_2 fuel such as BeO, Gd_2O_3 , and Cr_2O_3 is to improve fuel performance. The beryllium oxide (BeO) has high thermal conductivity and is chemically compatible with UO₂ [1]. The Gd_2O_3 is used as burnable absorbers in UO₂ [2-3]. Nevertheless, the incorporation of Gd_2O_3 in the UO₂ fuel decreases the density and the thermal conductivity. The addition of Cr₂O₃ at low concentrations (e.g., <0.2% by weight) hardly influences the thermophysical properties of UO₂ fuel. The addition of Cr₂O₃ is one of the ways to increase the grain size of UO₂ in order to extend the diffusion path for the fission product gases [4]. The objective of this work is to contribute to data of thermal conductivity of the UO₂ pellets containing additives as BeO; Gd_2O_3 and Cr_2O_3 . The content of Cr_2O_3 varied from 0.05 to 0.24wt%; the dopant BeO it ranged 2 and 3 wt% and the gadolinia was kept at 6wt%. These concentrations were considered for having been used in PWR plants as well as in preliminary studies already carried out. The pellets were compacted at pressures of 400 MPa based on the conventional processing of UO₂ pellets obtention with steps of the mixing of powders, pressing, and sintering under a reducing atmosphere. The UO₂ pellets were characterized by density (Archimedes principle) [5] and thermal diffusivity (Flash laser method) [6]. The thermal conductivity was calculated considering each oxide heat capacities.

2. Methodology

The Cr_2O_3 and BeO powders were supplied by Alfa Aesar (99.99% pure), the Gd_2O_3 by Sigma-Aldrich (99.98% pure) and the UO₂ powder was provided by IPEN - Institute of Energy and Nuclear Research. Quantities of each additive were added to uranium dioxide powder and in the following mixed mechanically for 4 h employing a rotating mechanical apparatus. The mixed powders were pressed in pellets form using an especial model of hydraulic press. These green pellets were sintered at 1700 °C for 4 h in an atmosphere of hydrogen using a Mo crucible. The density of each pellet was determined by xylol penetration and immersion method [5] and the pellet mass was taken on Mettler AT201 balance with resolution of 0.1 mg. For thermal diffusivity measurements, the laser flash method was employed in accordance with the ASTM-E-1461-13 standard [6] using abench equipment developed by researchers from the CDTN (Nuclear Technology Development Center). By this method, the front face of a small disk-shaped sample is subjected to a very short burst of radiant energy. The resulting temperature rise of the rear surface of the sample is registered and from the obtained thermogram, the sample thermal diffusivity is calculated. The obtained results were normalized by the following equations [1]:

$$\alpha_{95} = \alpha \cdot \left[\frac{1 - (0.05 \cdot \varepsilon)}{1 - (\varepsilon \cdot P)} \right] \cdot \left[\frac{1 - P}{1 - 0.05} \right]$$
(1)

$$\varepsilon = 2.6 - 5 \times 10^{-4} \cdot (T - 273.15) \tag{2}$$

Where α_{95} corresponds to the thermal diffusivity normalized to 95% of theoretical density, α to the determined thermal diffusivity, *P* to the porosity of the pellets, and T to the temperature. The specific heat capacity values were calculated by the law mixing [1,7] and the thermal conductivity of fuel pellets was determined by product of their thermal diffusivity, density, and specific heat capacity.

The results obtained were compared to fuel pellets of UO_2 . The expanded uncertainty was estimated according to the ISO/BIPM Guide to the Expression of Uncertainty in Measurement (GUM) [8].

3. Results and Discussion

Pellet sintered densities are shown in Table I. The maximum expanded relative uncertainty of sintered density pellets was 2%, for a coverage probability of approximately 95%, k=2. The densities obtained by the xylol immersion method were 94%, 95%, from 93% to 94%, and 84% of the theoretical densities (TD) of UO₂, UO₂-BeO, UO₂-Cr₂O₃, and UO₂-Gd₂O₃ fuel pellets, respectively. The addition of gadolinia had a negative effect on density. With the addition of 6% gadolinia the density was reduced by 11% when compared to pure UO₂, possibly due to the formation of porosity. The denser the fuel and the less porous the greater the thermal conductivity. However, the incorporation of chromium and beryllium oxides slightly changed the density value when compared to standard UO₂. Although UO₂ doped with Cr_2O_3 tends to promote densification and grain growth, other factors such as the potential sintering oxygen of the sintering atmosphere may have affected densification and grain growth.

Pellets composition	Sintered Density /g·cm ⁻³	%TD
UO ₂	10.12	94
	10.27	94
UO ₂ -2wt%BeO	9.93	95
UO ₂ -3wt%BeO	9.76	95
UO ₂ -0.05wt%Cr ₂ O ₃	10.17	93
	10.20	93
UO ₂ -0.10wt% Cr ₂ O ₃	10.24	94
	10.26	94
UO ₂ -0.20wt% Cr ₂ O ₃	10.20	93
	10,17	93
UO ₂ -0.24wt% Cr ₂ O ₃	10.26	94
	10.21	94
UO ₂ -6wt%Gd ₂ O ₃	8.97	84
	9.00	84

Table I [.]	Sintered	pellets	density
1 aoit 1.	Sincica	perious	ucinsity.

From Table II and Table III are shown the specific heat capacity, normalized thermal diffusivity, and the normalized thermal conductivity both to 95% TD. The maximum expanded relative uncertainty of the thermal diffusivity (coverage factor k = 2) was estimated at 7.5%. The highest deviation between duplicated pellets was of the order of 6%, indicating good reproducibility of the process. The expanded uncertainty for the specific heat capacity was assumed to be 2%, and the maximum expanded uncertainty for thermal conductivity is estimated at 8.0%. Regarding specific heat capacity at room temperature, for the Cr₂O₃ and Gd₂O₃ dopants, the calculated values are almost identical to that of pure UO₂. It is seen that for BeO dopant in UO₂, at high contents there is an increase in heat capacity. The maximum deviation in heat capacity from pure UO₂ to UO₂-3wt%BeO fuel pellets is about 11%. As expected, the thermal diffusivity and thermal conductivity of BeO dopants were 3.28 mm²·s⁻¹ to 3.71 mm²·s⁻¹ and 8.17 W·m⁻¹·K⁻¹ to 9.36 W·m⁻¹·K⁻¹, respectively. The thermal conductivity of UO₂-2wt%BeO and UO₂-3wt%BeO fuel pellets were about 17%

and 33% higher than that of UO₂ pellets, respectively. The incorporation of oxides of gadolinium in UO₂ affected the thermal diffusivity and thermal conductivity when compared to the UO₂ pellets. As expected, the presence of gadolinia implies an increase in the population of defects, so the thermal diffusivity and thermal conductivity decrease. The maximum deviation in thermal conductivity of Gd_2O_3 doped UO₂ from that of pure UO₂ is about 27%. It is seen that as the concentration of Cr_2O_3 is increased, the thermal conductivity is increased. Nevertheless, this increase in thermal conductivity is decreased for concentration up to 0.20wt%, probably because of phonon-impurity scattering (substitutional impurity), implying thermal conduction. In Fig. 1, the normalized thermal conductivity is plotted as a function of doped UO₂ for several dopants. A comparison of the thermal conductivity of UO₂ pellets calculated by equations of Ronchi *et al.* [9] and the data obtained here, indicates the quality of the process for obtaining fuel pellets.

Pellets Composition	Specific Heat Capacity /J·kg ⁻¹ ·K ⁻¹
UO ₂	235
UO ₂ -2wt%BeO	254
UO ₂ -3wt%BeO	262
UO ₂ -0.05wt% Cr ₂ O ₃	235
UO ₂ -0.10wt% Cr ₂ O ₃	236
UO ₂ -0.20wt% Cr ₂ O ₃	236
UO ₂ -0.24wt% Cr ₂ O ₃	236
UO ₂ -6wt%Gd ₂ O ₃	238

Table II: Specific heat capacity of the pellets at 298 K.

Table III: Normalized thermal	diffusivity results at 298 K.
-------------------------------	-------------------------------

	Normalized thermal	Normalized thermal
Pellets composition	diffusivity	conductivity
	$/\mathrm{mm}^2 \cdot \mathrm{s}^{-1}$	$/W \cdot m^{-1} \cdot K^{-1}$
UO_2	2.98	7.19
	2.91	7.03
UO ₂ -2wt%BeO	3.29	8.19
	3.28	8.17
UO ₂ -3wt%BeO	3.69	9.31
	3.71	9.36
UO ₂ -0.05wt%Cr ₂ O ₃	2.93	7.01
	3.06	7.34
UO ₂ -0.10wt%Cr ₂ O ₃	2.98	7.20
	3.15	7.61
UO ₂ -0.20wt%Cr ₂ O ₃	3.27	7.88
	3.45	8.29
UO ₂ -0.24wt%Cr ₂ O ₃	3.04	7.37
	3.21	7.74
UO ₂ -6wt%Gd ₂ O ₃	2.45	5.23
	2.52	5.41

Figure 1: Normalized thermal conductivity of UO₂-base fuel and standard UO₂ fuel.

4. Conclusions

Uranium dioxide pellets for nuclear fuel have been widely used in nuclear power plants, and their low thermal conductivity affects the performance of nuclear fuel. In the present work, we observed that the thermal conductivity of the UO₂-BeO pellets increased with the BeO content and for the UO₂-Gd₂O₃ pellets a substantially lower thermal conductivity was verified, showing that in fact the Gd₂O₃ additive affects the thermal conductivity of the pellets. The fuel doped with Cr_2O_3 had a smaller effect on thermal conductivity when compared to UO₂, which is a good result in case the intention is to increase the grain size of UO₂.

Acknowledgements

CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnológico, GTD SIBRATEC – Rede de Serviços Tecnológicos em Geração, Transmissão e Distribuição de Energia Elétrica and SIBRATEC-SiSNano-Modernit (Sistema Nacional de Laboratórios em Nanotecnologia).

References

- S. Ishimoto, *et al.* "Thermal Conductivity of UO₂-BeO Pellet," *J. Nuc. Sci. Tech.*, vol. 33, no. 2, pp. 134–140 (1996).
- [2] T. Cardinaels *et al.* "Dopant Solubility and Lattice Contraction in Gadolinia and Gadolinia-Chromia doped UO₂ Fuels", *J. Nuc. Mat.*, vol. 424, no. 1-3, pp. 289-300 (2012).
- [3] M. Durazzo *et al.*, "Sintering Behavior of UO₂-Gd₂O₃ Fuel: Pore Formation Mechanism", J. Nuc. Mat., vol. 4, no. 2, pp. 334–340 (2013).
- [4] A. R. Massih, "Effects of Additives on Uranium Dioxide fuel behavior", Report number: 2014:21, ISSN: 2000-0456, Sweden (2014).
- [5] American Society for Testing and Materials, ASTM B962, "Standard Test Methods for Density of Compacted or Sintered P. Metall. Products Using Archimedes' Principle", West Conshohocken (2017).
- [6] American Society for Testing and Materials, ASTM E1461-13, "Standard Test Method for Thermal Diffusivity by the Flash Method", ASTM International, West Conshohocken (2013).
- [7] "International Atomic Energy Agency, Thermophysical Properties Database of Mat. for Light Water R. and Heavy W. React." https://www-pub.iaea.org/MTCD/Publications/PDF/te 1496_web.pdf (2006).
- [8] "Joint Committee for Guides in Metrology, Guide to the Expression of Uncertainty in Measurement," https://www.bipm.org/utils/common/documents/jcgm/JCGM 100 2008 e.pdf (2008).
- [9] C. Ronchi, et al. "Thermal Conductivity of Uranium Dioxide up to 2900 K from Simultaneous Meas. of the Heat Capacity and Thermal Diffusivity", J. Appl. Phys., vol 85, no. 2, pp. 776–789 (1999).