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1. Introduction 
 

In 1977 Finnemann, Bennewitz, and Wagner (Finnemann et al., 1977) introduced the Nodal Expansion 

Method (NEM), by combining neutron diffusion theory, polynomial expansions, interface currents 
continuity, and weighted residual techniques. Two classical two-dimensional benchmarks were simulated: 

IAEA and LRABWR. Considering assembly-size nodes, the fifth-order expansion using Galerkin 

weighting (G5) provided more accurate results than the fourth-order expansion using moments weighting 

(M4). Nevertheless, the authors suggested moments weighting to be preferable. The quadratic 
approximation has been considered appropriate to represent the transverse leakage terms. 

Most nodal diffusion methods make use of a transverse integration procedure to solve the multi-

dimensional neutron diffusion equation. The multi-dimensional problem is reduced to a set of coupled one-

dimensional equations. NEM is a consistent method, converging to the exact solution as the mesh spacings 

are reduced, with no restrictions on energy groups, computationally efficient, and accurate for meshes up to 

the typical size of assemblies.  NEM can be regarded as an application of the weighted residual techniques 

and its effectiveness depends on the proper choice of weight functions. In most LWR simulations, the flux 

has a relatively smooth shape. Nevertheless, as traditionally used by NEM, a fourth-order expansion may 

not produce sufficiently accurate results for nodes located near the core-reflector interface regions, mainly 

due to thermal neutron effects.  

A detailed analysis of the Nodal Expansion Method has been performed, which allowed the 

development of formalism capable of generating polynomial expansions of any order. The proposed basis 

functions should introduce the higher-order expansions needed to describe the average transverse flux more 

properly. Comparisons for two- and three-dimensional LWR static benchmarks simulations have been 

performed using up to tenth-order polynomial expansions, for both weight functions: moments and 

Galerkin. The new basis functions have led to more accurate results for      and normalized assembly 

power distribution, including nodes at fuel-reflector interfaces. 
 
 

2. Methodology 
 

In nodal diffusion methods, the reactor core spatial domain is partitioned into regular volumes, called 

nodes. In NEM, the node (m) is a rectangular parallelepiped with a coarse meshing comparable to the fuel 

assembly pitch. The integration of the neutron continuity equation over a node volume (  ), in an average 

sense, provides a set of new equations called nodal balance equations. 

Although the nodal balance equations formulation is performed without any approximation, it is 

incomplete in the sense that it relates two unknown quantities: the average node flux (   
 ), and interface net 

currents (      
 ). To establish a complete system of equations, additional relations are derived from Fick’s 
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Law by applying a transverse-integration procedure. The resulting equations are called coupling equations. 
The coupling equations express the relationship between the interface net currents and average transverse 

fluxes (    
    ). An equation describing the behavior of the average transverse flux along the u-direction is 

obtained from the transversely integrated neutron diffusion equation. The leakage term in the transversely 

integrated neutron diffusion equation is split into three components: one on the generic u-direction 

(considered direction) and two on the transverse directions (   
    ). 

In order to solve the transversely integrated neutron diffusion equation, NEM makes use of a fourth-

order polynomial expansion to approximate     
     and a second-order expansion to    

    : 

 

    
          

 

 

   

          
          

 

 

   

           
           

             (1) 

 

Where the       are NEM’s basis functions (Table I), and    
  denotes de node width along u-direction. 

 

Table I: NEM’s basis functions. 
 

 
 

Imposing consistent conditions to the average transverse flux polynomial expansion form, the first three 

expansion coefficients can be determined. The resulting equation is known as the basic variant of NEM. The 
final equations' set is obtained by inserting the average transverse flux approximation into the coupling 

equations and eliminating the outgoing currents from the nodal balance equation. Although the balance 

equations for nodal fluxes and interface currents have been established, the higher-order coefficients (    
  

and     
 ) remain unknown. For such a purpose, the weighted residual procedure can be applied. 

Once all NEM steps were identified and understood, it became possible to generate the basis functions 

of any order and go through all the steps of the method. The new basis functions up to the tenth-order are 

shown in Table II. 

 
Table II: New basis functions up to tenth-order. 

 

 
 

 

3. Results and Discussion 
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In order to assess the potential of the proposed higher-order expansions, three computational 

simulations up to the tenth order were performed: IAEA 2D, BIBLIS 2D and LRABWR 3D. The 

benchmarks simulations were used to determine the effects of the proposed higher-order expansions on the 
calculation accuracy and effectiveness. In all simulated benchmarks, the size of the nodes was the same as 

the pitch of fuel assemblies (one node per assembly). 

A FORTRAN 90 computer program, based on the nodal diffusion computational infrastructure (Silva et 
al., 2010) of the Nuclear Engineering Program (PEN) at COPPE/UFRJ, was developed using the Microsoft 

Visual Studio 2008 compiler and running on an Intel i3-2350M 64 bit 2.30GHz processor using the 

Windows 7 operating system. All floating-point calculations were performed in double precision to 

maximize accuracy.  

The adopted tolerances were      for      and      for the average nodal fluxes (   
   in all 

simulations, and a parabolic approximation for the transverse leakages (   
    ) was used in all calculations. 

The reference values, whenever possible, were those found in the scientific literature obtained from fine 

mesh calculations. Considering the easy availability of the benchmarks data, only the reference sources are 
listed (Table III). 

The simulations are identified by a capital letter and a number. The letter denotes the type of weight 

function (Moments or Galerkin), while the number specifies the adopted expansion order. The M4 

approximation is used in NEM. 
 

Table III: Benchmarks source references. 

 

IAEA 2D - Data reference: ANL-7416 Supplement 2, ID.11-A2 (Benchmark Problem Book, 1977). 

Results reference: Pessoa (Pessoa et al., 2016), Finite Difference Method, 0.50 cm mesh size. 

BIBLIS 2D - Data reference: Müller (Müller and Weiss, 1991). 

Results reference: Shober (Shober, 1978). 

LRABWR 3D - Data reference: Kim (Kim, 1983). 

Results reference: Kim (Kim, 1983), Finite Difference Method, 0.75 cm mesh size. 

 

 

Table IV: Summary of the simulated benchmarks results. 
 

Benchmark Type 
      

      
      

      

      

    

      

    

    

    

    

    

IAEA 2D 
M4 0.28 -7.6 0.43  1.22 - - 

M5 0.30  4.0 0.38 -1.58 56 36 

G6 0.31  0.7 0.20 -0.91 63 36 

BIBLIS 2D 
M4 0.33  7.8 0.42 2.32 - - 

M5 0.37 15.6 0.23 1.18 70 100 

G6 0.35 17.7 0.28 1.25 61 83 

LRABWR 3D 

M4 6.18 -16.1 0.69 2.15 - - 

M6 7.94 0 0.11 0.39 99 100 

G8 11.57 0 0.11 0.39 99 100 

 

      : Execution time. 

      : Eigenvalue relative error. (    stands for “percent mille”,      ) 

      : Average relative error for the normalized assembly power distribution. 

     : Maximum relative error for the normalized assembly power distribution. 

      : Percent result favoring a higher-order expansion in the whole normalized assembly power 

distribution. 

      : Percent result favoring a higher-order expansion in peripheral nodes (fuel-reflector interface). 
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The fourth- and fifth-order expansions are the highest orders verified in the reference paper (Finnemann 

et al., 1977), using moments and Galerkin weightings respectively (   
  and    

 , according to the 

Finnemann’s notation, where    refers to the parabolic approximation for transverse leakages). 

Consequently,    and    have been adopted as starting points in the present investigation (M4 and G5 in 

current notation, respectively).  

In order to verify which higher-order expansion was in good (or the best) agreement to the expected 

normalized assembly power distribution, the average power deviation       was taken as the most efficient 

indicator. 

 

 

4. Conclusions 

 

As known, in its traditional formulation, NEM does not work properly in regions bordering the 

reflector. The introduced basis functions have led to more accurate results for both      and normalized 

assembly power distribution, including nodes at fuel-reflector interfaces. Although it looks promising, 
further studies on the improvements introduced by the extension of the basis functions should be done. 

Considering the presented information, it is reasonable to claim that the higher-orders expansions 

enhance NEM's accuracy with no loss of efficiency. On the other hand, it should also be considered that this 

work is the initial investigation on the applicability and feasibility of the introduced basis functions. 

Therefore, further tests are still needed. 
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