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1. Introduction 
 

The essence of the neutron transport theory is based on the study of the balance between production and 

removal of particles which migrate in a given material medium. This phenomenon is mathematically 

modeled by the linear Boltzmann transport equation [1] and has important applications, e.g., in radiological 

protection; nuclear reactor physics; in the industry in non-destructive testing; in medicine with boron 

neutron capture therapy, just to mention a few. 

Numerical solutions to fixed-source discrete ordinates (SN) neutron transport problems can be obtained 

iteratively by the classical source iteration (SI) scheme implemented in the conventional fine-mesh Diamond 

Difference (DD) method [1]. The SI scheme shows slow convergence rates for scattering dominated slabs 

with several mean free paths in extent and it is well known that synthetic acceleration (SA) techniques are 

very efficient for SI schemes [2]. In this work, it is described an acceleration strategy for the SI scheme in 

slab geometry based on the coarse-mesh solution of the PN equations as initial guess for the fine-mesh 

scattering source. We refer to this methodology as the PNSA scheme. 

The application of the PN method, also known in the literature as the spherical harmonics method, was 

introduced by R. E. Marshak [3] and J. C. Mark [4] in neutron transport calculations. The methodology, as 

presented in this summary, is completely free from spatial truncation errors and is described in detail in [5] 

and [6].  
 

2. Methodology 

 

In the 𝑃N method, adopted in this work for modeling the physical phenomenon of neutron transport, all 
macroscopic cross sections of the medium are known, the regime is stationary, the domain is a slab and 
neutrons are monoenergetic, i. e., neutrons do not change their kinetic energy upon collision with the nuclei 
of atoms of the material medium. In fact this is a good approximation when the non-multiplying scattering 
media are composed of heavy atoms. This phenomenon can be modeled mathematically by the PN equations 
[5] which can be written as 
 

(ℓ + 1)𝜙ℓ+1
′ (𝑥) + ℓ𝜙ℓ−1

′ (𝑥) + (2ℓ + 1)𝜎ℓ(𝑥)𝜙ℓ(𝑥) = 𝑄(𝑥)𝛿ℓ,0 ,  ℓ = 0: 𝑁, 

𝜎ℓ(𝑥) ≡ 𝜎𝑇(𝑥) − 𝜎𝑠ℓ(𝑥) , 0 ≤ 𝑥 ≤ 𝑋. 

 

(1) 

 

where 𝜙ℓ(𝑥), ℓ = 0: 𝑁, are the dependent variables defined as angular moments of order ℓ [5], 𝜎𝑇(𝑥) is the 

total macroscopic cross section at position 𝑥; 𝜎𝑠ℓ(𝑥) is the ℓ-th component of the differential macroscopic 

scattering cross section at position 𝑥; 𝑄(𝑥) is an isotropic interior source at position 𝑥; 𝛿ℓ,0 is the Kronecker 

delta, i. e., it is equal to unity for ℓ = 0 and it is equal to zero otherwise; 𝑁 is the degree of 𝑃𝑁 

approximation [4]; 𝑋 is the length of the one-dimensional domain and 𝜙′(𝑥) is a simplified notation for the 

first-order ordinary derivative with respect to 𝑥, i. e., 𝜙′(𝑥) =
𝑑𝜙(𝑥)

𝑑𝑥
. Moreover, 𝜙0(𝑥) is defined as neutron 

scalar flux and 𝜙1(𝑥) is the total neutron current. The other angular moments do not have special definitions 

[5]. 

The analytical solution for Eq. (1) is determined by a simplified algorithm proposed in [5] for odd degrees 𝑁 

and arbitrary degrees of scattering anisotropy 𝐿 ≤ 𝑁. In this work we describe an acceleration technique 
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based on an improved initial guess for the scattering source distribution within the slab.  

Consider at this point, for example, a heterogeneous one-dimensional domain with 𝑁𝑅 regions. The number 

of material zones in a one-dimensional domain is always less than or equal to the number of regions 𝑁𝑅. 

Material parameters 𝜎ℓ(𝑥), ℓ = 0: 𝑁, and interior source 𝑄 are uniform within each region of the domain. 

Thus, the system of equations, as represented in Eq. (1), inside a region 𝑟, appears as 

 
(ℓ + 1)𝜙ℓ+1

′ (𝑥) + ℓ𝜙ℓ−1
′ (𝑥) + (2ℓ + 1)𝜎ℓ𝜙ℓ(𝑥) = 𝑄𝛿ℓ,0 ,  ℓ = 0: 𝑁, 

𝜎ℓ ≡ 𝜎𝑇 − 𝜎𝑠ℓ , 𝑥 ∈ [0, ℎ𝑟] , 𝑟 = 1: 𝑁𝑅 . 

 

(2) 

 

As can be seen in Eq. (2), the position 𝑥 belongs to the interval [0, ℎ𝑟], where ℎ𝑟 represents the thickness of 

region 𝑟. 

Equation (2) constitutes a system of 𝑁 + 1 first-order linear ordinary differential equations with constant 

coefficients whose general solution is composed by the sum of a homogeneous solution with a particular 

solution [5]. To obtain the homogeneous component of the local general solution for 𝜙0(𝑥), and also the 

local solutions for the other angular moments, it is necessary to solve the following homogeneous system: 

 

𝝓′ = 𝑨𝝓 , (3) 

 

where 𝝓′ represents the column vector with the 𝑁 + 1 derivates and 𝝓 is the column vector with the 𝑁 + 1 

angular moments. The local homogeneous system (3) is solved by performing a spectral decomposition of 

matrix 𝑨 [5]. The general solution for the local system (2), i. e., sum of the solution of the homogeneous 

system (3) with the particular component, can be written as  

 

𝜙ℓ(𝑥) = ∑ 𝐶𝑘𝑎ℓ(𝜈𝑘)𝑒𝜈𝑘𝑥 +
𝑄

𝜎𝑎

𝑁

𝑘=0

𝛿ℓ,0 , ℓ = 0: 𝑁, 𝑥 ∈ [0, ℎ𝑟], 𝑟 = 1: 𝑁𝑅 , 
 

(4) 

 

where 𝜈𝑘, 𝑘 = 0: 𝑁, are the 𝑁 + 1 eigenvalues of matrix 𝑨; 𝑎ℓ(𝜈𝑘), ℓ = 0: 𝑁, is the ℓ-th component of 

eigenvector of matrix 𝑨 associated to the eigenvalue 𝜈𝑘 and 𝐶𝑘, 𝑘 = 0: 𝑁, are the 𝑁 + 1 constants per 

region. To determine these 𝑁 + 1 constants per region it is necessary to establish boundary conditions and 

interfaces conditions that yield a system with (𝑁 + 1)𝑁𝑅  algebraic linear equations in (𝑁 + 1)𝑁𝑅 

unknowns, which are the constants that need to be calculated. In this work, only prescribed boundary 

conditions are adopted. To approximate the prescribed incidence boundary conditions in the PN method, 

Mark type of boundary conditions is considered [5]. 

To use the boundary conditions of the Mark type, the roots of the 𝑁 + 1 degree Legendre polynomial are 

firstly obtained, which appear in positive and negative pairs and have the following format: 
𝑁+1

2
 positive 

roots equal to the absolute values of the other 
𝑁+1

2
 negative roots. At the left end of the domain, i. e., at 𝑥 =

0, the following set of equations [5] is used: 

 

∑ ∑
2ℓ + 1

2
𝑃ℓ(𝜇𝑛)𝑎ℓ(𝜈𝑘)

𝑁

ℓ=0

𝐶𝑘

𝑁

𝑘=0

= 𝐼𝐸 −
𝑄

2𝜎𝑎
 , 𝜇𝑛 > 0, 𝑛 = 1:

𝑁 + 1

2
, 

 

(5) 

 

where 𝐼𝐸 is the isotropic prescribed flux incident on the left boundary and 𝜇𝑛 is the 𝑛-th positive root. To the 

right end of the domain, i. e., at 𝑥 = ℎ𝑁𝑅
, the set of equations used is given by [5] 

 

∑ ∑
2ℓ + 1

2
𝑃ℓ(𝜇𝑛)𝑎ℓ(𝜈𝑘)𝑒𝜈𝑘ℎ𝑁𝑅

𝑁

ℓ=0

𝐶𝑘

𝑁

𝑘=0

= 𝐼𝐷 −
𝑄

2𝜎𝑎
 , 𝜇𝑛 < 0, 𝑛 = 1:

𝑁 + 1

2
 , 

 

(6) 
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where 𝐼𝐷 is the isotropic prescribed flux incident on the right boundary and, in this case, 𝜇𝑛 is the 𝑛-th 

negative root. In this way, a total of 𝑁 + 1 contour equations are obtained: (𝑁 + 1)/2 on the left contour 

and (𝑁 + 1)/2 on the right contour.  

For a heterogeneous domain, i. e., consisting of more than one region, it is necessary to complete the system 

with additional (𝑁 + 1)(𝑁𝑅 − 1) equations, which are obtained from the continuity of all angular 

moments in the 𝑁𝑅 − 1 interfaces of the one-dimensional domain, i. e., 

 

𝜙ℓ
𝑟(ℎ𝑟) = 𝜙ℓ

𝑟+1(0), 𝑟 = 1: (𝑁𝑅 − 1), ℓ = 0: 𝑁 . (7) 

 

The local general solution (4) is substituted into Eq. (7) and then (𝑁 + 1)(𝑁𝑅 − 1) equations are obtained. 

Therefore, through the methodology, as outlined above, a system with (𝑁 + 1)𝑁𝑅 algebraic linear equations 

in (𝑁 + 1)𝑁𝑅 unknowns is built. Once these constants are determined, the angular moments can be 

calculated at any position in the domain using Eq. (4). 

In this work it is considered the steady-state, one-speed, fixed source SN problem with isotropic scattering in 

slab geometry [1] 

 

𝜇𝑚

𝑑

𝑑𝑥
𝜓𝑚(𝑥) + 𝜎𝑇(𝑥)𝜓𝑚(𝑥) =

1

2
𝜎𝑠(𝑥) ∑ 𝜓𝑛(𝑥)𝜔𝑛 +

𝑄(𝑥)

2
, 0 < 𝑥 < 𝑋, 𝑚 = 1: 𝑁,

𝑁

𝑛=1
 

(8) 

 

with the boundary conditions 𝜓𝑚(0) = 𝐼𝐸, 𝜇𝑚 > 0 and 𝜓𝑚(𝑋) = 𝐼𝐷, 𝜇𝑚 < 0. Here 𝐼𝐸 and 𝐼𝐷 are prescribed 

incident fluxes on the outer boundaries of the slab of thickness 𝑋; 𝜓𝑚(𝑥) = 𝜓(𝑥, 𝜇𝑚) is the angular flux of 

particles traveling in direction 𝜇𝑚; 𝜔𝑛 is the angular weight for direction 𝜇𝑛; 𝜎𝑇 is the total cross section; 𝜎𝑠 

is the isotropic component of the differential scattering cross section and 𝑄 is the interior source. 

Furthermore, considering a discretization spatial grid set up on a given slab of thickness 𝑋 composed of 𝐽 

fine cells, each discretization cell has thickness ℎ𝑗, constant cross sections 𝜎𝑇,𝑗 and 𝜎𝑠,𝑗 and constant source 

𝑄𝑗 and considering �̅�𝑚,𝑗 =
𝜓𝑚,𝑗+1/2+𝜓𝑚,𝑗−1/2

2
, 𝑚 = 1: 𝑁, 𝑗 = 1: 𝐽, the standard SI scheme used in the DD 

method is based on transport sweeps on the slab. 

 

𝜓𝑚,𝑗±1/2 =

(
|𝜇𝑚|

ℎ𝑗
−

𝜎𝑇,𝑗

2 ) 𝜓𝑚,𝑗∓1/2 +
𝜎𝑠,𝑗

2
∑ �̅�𝑛,𝑗𝜔𝑛

𝑁
𝑛=1 + 𝑄𝑗

|𝜇𝑚|
ℎ𝑗

+
𝜎𝑇,𝑗

2

,  

𝜇𝑚 > 0: 𝑗 = 1: 𝐽, 𝑚 = 1:
𝑁

2
 𝑎𝑛𝑑 𝜇𝑚 < 0: 𝑗 = 𝐽: 1, 𝑚 = (

𝑁

2
+ 1) : 𝑁. 

 

 

(9) 

 

For an improved initial guess ∑ �̅�𝑛,𝑗𝜔𝑛 =  �̅�𝑗
𝑁
𝑛=1 =

1

ℎ𝑗
∫ 𝜙0(𝑥)𝑑𝑥

𝑥𝑗+1/2

𝑥𝑗−1/2
, calculated using Eq. (4), Eq. (9) is 

used to sweep from left to right (𝜇𝑚 > 0, upper signs) and from right to left (𝜇𝑚 < 0, lower signs) to 

estimate the cell-edge angular fluxes. Then, the scattering source is updated before proceeding to the 

transport sweeps again, until a preassigned stopping criterion is satisfied.  

 

3. Results and Discussion 

 

It is considered a homogeneous slab of thickness 100 cm with 𝜎𝑇 = 1.0 𝑐𝑚−1 and isotropic scattering. 

Prescribed boundary conditions = 1,000 apply at 𝑥 = 0 and 𝑥 = 100 cm, i. e., 𝐼𝐸 = 𝐼𝐷 = 1,000 in the 

boundary conditions equations with Gauss-Legendre S32 angular quadrature set. 

To solve this problem, it was used the DD method on a fine spatial grid composed of 2,000 uniform nodes 

and a stopping criterion requiring that the sum of all absolute deviation between two consecutive estimates 

of the node-edge scalar flux does not exceed 10−5. 

As can be seen in Table I, by increasing the scattering macroscopic cross section (𝜎𝑠), and thus reducing the 
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absorption cross section, the non-accelerated SI scheme shows slow convergence rate compared to the 

accelerated SI scheme with PNSA. As expected, by increasing the degree 𝑁 in PNSA, the number of 

iterations to convergence is reduced. 

 

Table I – Number of iterations and CPU time for each method with different 𝜎𝑠. 

Method Scattering Macroscopic Cross Section 𝜎𝑠 (cm-1) 

0.8 0.9 0.97 0.995 

SI 70 

(2.5 s) 

144 

(5.0 s) 

476 

(16 s) 

2707 

(90.0 s) 

P5SA 53 

(2.1 s) 

104 

(3.7 s) 

326 

(11.0 s) 

1700 

(56.5 s) 

P15SA 46 

(1.9 s) 

89 

(3.6 s) 

273 

(9.4 s) 

1381 

(45.9 s) 

P31SA 39 

(1.9 s) 

74 

(3.2 s) 

210 

(7.6 s) 

896 

(30.2 s) 

 

4. Conclusions 

 

Based on the numerical results presented in the previous section, it can be concluded that the coarse-mesh 

PNSA strategy is very efficient, as it accelerates the SI scheme by reducing the number of iterations to 

convergence and shortened the CPU execution time. This is more significant in problems with low 

absorption as can be seen in the fifth column of Table I. As future work, it is intended to apply this 

acceleration scheme for multidimensional SN transport calculations. 
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