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ABSTRACT 

This paper explains simple probabilistic analysis and design for tensile strength and pullout internal stability limit 
states for geosynthetic reinforced soil walls. The general approach uses a closed-form solution for reliability 
index which is easily implemented in a spreadsheet and thus eliminates the need for Monte Carlo simulation. A 
novel feature of the formulation is that it includes uncertainty in the calculation of nominal values which is 
consistent with the notion of level of understanding that appears in the Canadian Highway Bridge Design Code, 
and variability in the underlying accuracy of the load and resistance models that appear in each limit state 
equation using bias statistics. Here, bias is the ratio of observed value to predicted value using closed-form 
solutions for load and resistance terms. A design example based on a constructed geogrid reinforced soil wall is 
used to demonstrate the general approach.  

 

 

 

1. INTRODUCTION 

 

Geotechnical foundation engineering, including design of geosynthetic reinforced soil walls (or mechanically 
stabilized earth (MSE) walls) is moving towards reliability-based analysis and design where margins of safety for 
limit states are expressed in probabilistic terms (or reliability index). Margins of safety quantified in probabilistic 
terms are more informative and more intuitive than margins of safety expressed as a factor of safety in 
deterministic design practice.  

Figure 1 shows the notional relationship between true (operational) factor of safety and probability of failure. 
Here Qm is measured (observed) load and Rm is measured (observed) resistance. Both quantities have some 
uncertainty and thus the distributions for Qm and Rm can be described by frequency distributions located about 
mean values of measured load and resistance, mQ and mR  , respectively . The ratio of mR  and mQ  values can 

be understood to be the operational (true) factor of safety /m mOFS = R Q . As the difference between mR and 

mQ increases, the true factor of safety increases and the overlap between distributions increases. The area of 
overlap is notionally related to probability of failure, Pf. The disadvantage of deterministic design practice is that 
the same factor of safety may have different uncertainty (spread) in Qm and Rm and thus different probabilities of 
failure.  

The transformation from nominal resistance (Rn) to measured resistance (Rm) and from nominal load (Qn) to 
measured load (Qm) is made by multiplying each nominal value by a corresponding bias value denoted as λR 
and λQ, respectively; hence, Qm = λQ Qn and Rm = λR Rn. If there is no difference between calculated nominal 
values and measured values then OFS = Fn = Rn/Qn; the quantity Fn is familiar to geotechnical engineers as the 
classical deterministic factor of safety for a given limit state. The likelihood that nominal and measured load 
values and nominal and measured resistance values are the same for soil-structure interaction problems, 
including internal limit states for geosynthetic MSE walls, is vanishingly small.  

Simple linear limit states with a single load term can be expressed as: 
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If bias values are also assigned uncertainty expressed by a frequency distribution function, then the probability 
of failure of a limit state is Pf = P(g < 0). The probability of failure can be computed by sampling distributions for 
λQ , Qn , λR and Rn many times, and dividing the number of times that g < 0 by the total number of trials 
(realizations). This is called Monte Carlo (MC) simulation. However, MC simulation may be tedious and many 
realizations may be required to compute a confident estimate of Pf for cases with low probabilities of failure. 
Furthermore, there are potential correlations between variables which may have to be accounted for during MC 
simulation. The influence of these correlations can play out in ways that are not easily detectable by simply 
counting the number of g < 0 occurrences. 

Fortunately, there is a closed-form solution for reliability index (β) that can be used to estimate the margin safety 
in probabilistic terms for the case of simple linear limit state functions with a single load term (Qn) and all bias 
and nominal values are lognormally distributed (the typical case); specifically (Bathurst and Javankhoshdel 
2017): 
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This equation follows from basic probability theory. All assumptions and full details of its derivation can be found 
in the appendix to the paper by Bathurst and Javankhoshdel (2017). Parameters µRn, µQn, µλR and µλQ are mean 
values of nominal resistance and load values (Rn and Qn), and resistance and load bias values (λR and λQ), 
respectively. Their corresponding coefficients of variation (COV) are denoted as COVRn, COVQn, COVλR and 
COVλQ. The nominal resistance value (Rn) and nominal load value (Qn) used at time of design in the limit state 
design equations are equivalent to µRn and µQn in the above equation. 

The COV values for nominal load and resistance values (Qn and Rn) capture the total uncertainty in the 
magnitude of nominal values used at time of design from all sources. For example, there is always some 
uncertainty in the value of friction angle and unit weight that appear in the load and pullout equations introduced 
later. However, the sources of uncertainty can extend to the applicability of the load and resistance models to 
project-specific conditions. In Canadian load and resistance factor design (LRFD) foundation practice, the 
concept of level of understanding has been adopted (CSA 2019). The magnitude of resistance factor used in a 
limit state design equation in the Canadian LRFD code increases as level of understanding moves from low to 
high. Level of understanding increases with increasing amount and quality of project materials data, greater 
experience of the designer with the candidate MSE wall technology, and decreases with increasing complexity 
of the project and so on. The three levels of understanding that appear in the Canadian code are used to reward 

 
Figure 1. Frequency distributions for measured load (Qm) and measured resistance (Rm) 



 

design engineers (and their clients) with more cost effective design solutions as more effort is expended to 
increase project level of understanding. Stated alternatively, this scheme encourages engineers to collect more 
site information and to carry out more material property testing.  

In order to quantify level of understanding in reliability-based analysis and design, Bathurst et al. (2017) mapped 
COV of nominal values equal to 0.1, 0.2 and 0.3 to high, typical and low levels of understanding, respectively. 
These values are used in the calculations that appear later in the paper. The exception is the tensile rupture 
limit state where COVRn = 0 because the nominal allowable tensile strength of the reinforcement (Tal) used at 
time of design is prescribed based on project conditions. The uncertainty (or variability) in allowable tensile 
capacity of the reinforcement is captured entirely by the spread in bias values (i.e. COVλR) that is computed 
from variability in tensile strength at end of design life.     

The operational factor of safety introduced earlier appears in the numerator of Equation 2 as: 
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Inspection of this equation shows that the true average operational factor of safety is different from the nominal 
factor of safety as mentioned earlier. Typically, OFS > Fn because resistance models often under-estimate 
resistance capacity and/or load models tend to over-estimate actual loads.  

Parameters ρR and ρQ in Equation 2 are Pearson’s correlation coefficients between variables Rn and λR, and 
between Qn and λQ, respectively, and represent bias dependencies with nominal values. Stated alternatively, 
these correlations capture the case where model accuracy (i.e. bias) varies with the magnitude of the computed 
nominal value. 

Parameter ρn is the correlation coefficient between Rn and Qn and is called nominal correlation following the 
terminology introduced by Lin and Bathurst (2018).  

The link to probability of failure is Pf = 1 − Φ(β) where Φ(β) is the standard normal cumulative distribution 
function (NORMSDIST(β) in Excel). The relationship between probability of failure and reliability index is shown 
in Figure 2. 

The ratio of the mean of nominal resistance and mean of nominal load is assumed equal to the nominal factor of 
safety Fn introduced earlier (i.e. Fn = µRn/µQn = Rn/Qn).   

Equation 2 can be written as: 

 

nβ = A ln(F ) + B×     [4] 

where A and B are constant values that are collections of statistical quantities in Equation 2. Equation 4 shows 

 
Figure 2. Probability of failure versus reliability index 



 

that there is a log-linear relationship between reliability index β and the nominal factor of safety. By increasing 
the nominal factor of safety at time of design and keeping all other quantities the same, the margin of safety 
expressed as reliability index or probability of failure (i.e. Pf = 1 − Φ(β)) also increases. While this is expected, 
Equation 4 (or equivalently  Equation 2) has the advantage of providing a quantitative link between deterministic 
factor of safety design practice and margins of safety expressed in a probabilistic framework.      

 

2. INTERNAL LIMIT STATES 

 

In this paper, internal stability limit states for tensile strength (rupture) and pullout modes of failure are 
investigated. The geometry and parameters that correspond to these limit states are shown in Figure 3. 

 

2.1 Tensile load 

The calculation of nominal load (Tmax) is based on the Simplified Stiffness Method (Allen and Bathurst 2015, 
2018) which has been adopted in the USA AASHTO (2020) LRFD specifications and has the general form: 

max fs v vT f (H, ,S ,z, , , J)= Φ f s       [5] 

Here, Tmax is the maximum tensile load in a reinforcement layer under operational conditions and is expressed 
in units of force per unit running length of wall face (e.g. kN/m). Other terms are H = height of wall, Φfs = facing 
stiffness factor, Sv = tributary area of each reinforcement layer, z = depth below crest of the wall, f = peak 
friction angle of the soil, sv = vertical stress due to soil self-weight (γ) plus any uniformly distributed surface 
surcharge q (i.e. sv = γz + q), and J = secant stiffness value at 2% strain and 1000 h for geotextiles and geogrids 
(Allen and Bathurst 2015) and 1% strain and 1000 h for polyester straps (Miyata et al. 2018). 

 

2.2 Tensile strength  

The ultimate tensile strength (rupture) capacity of the reinforcement is taken as the long-term allowable strength 
and is computed as (AASHTO 2020): 
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The numerator is a reference laboratory ultimate tensile strength (Tult) that is reduced by factors that account for 
loss of strength over the design life of the reinforcement due to installation damage (RFID), creep (RFCR) and 
degradation (durability) mechanisms (RFD). Parameter RF is combined reduction factor. 

 

2.3 Pullout  

The ultimate pullout capacity (Pc) in this paper is computed using the current AASHTO (2020) model. 

  

*
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   [7] 

 

Here, F* = coefficient of interaction (dimensionless) = (2/3) tan f, α = 0.8, Le = anchorage length within the 
passive zone (Figure 3), and Rc = reinforcement coverage length and is taken as Rc = 1 for continuous 
reinforcement layers (e.g. the wall case study to follow).  

 

3. EXAMPLE   

 

The example wall case used to demonstrate the calculation of β is taken from Bathurst et al. (2019a,b) and 
Allen and Bathurst (2014, 2018). The wall geometry and geogrid reinforcement arrangement are shown in 
Figure 4. Material properties are summarized in Table 1. The reinforcement properties correspond to the least 



 

stiff high density polyethylene (HDPE) geogrid reinforcement material in the geogrid product line that was 
available at the time the wall was designed. 

 

4. RESULTS 

 

In the analyses carried out in this paper, ρn = 0 for the rupture limit state because nominal load values and 
nominal resistance values are sampled from independent populations. For the pullout limit state the soil material 
properties and their statistical characteristics are the same for the load equation associated with the active 
wedge in Figure 3 and the pullout equation associated with the passive zone. Hence, ρn ≠ 0 and will vary with 
changes in the distributions for friction angle and unit weight assumed at the location of each reinforcement 
layer as demonstrated by Lin and Bathurst (2018). Since Pc will increase with increasing f while Tmax will 
decrease with increasing f, a negative nominal correlation is expected between load and resistance values for 
the pullout limit state. The maximum possible negative value is ρn = -1 which also gives the most conservative 

 
Figure 3. Internal limit states for tensile strength (rupture) and pullout for geosynthetic MSE wall 

 

 
Figure 4. Example geogrid MSE wall (after Allen and Bathurst 2014) 



 

outcome (smallest value for β when all other parameters remain unchanged). Inspection of the last parenthetical 
term in the denominator of Equation 2 reveals why ρn = -1 will give the most conservative β outcome. This value 
is used in the calculations to follow for the pullout limit state. A deeper treatment of this issue can be found in 
the paper by Bathurst et al. (2019b). Bias statistics for the load and resistance models used in this example are 
summarized in Table 2. 

Results of β calculations using Equation 2 are summarized in Table 3 for the tensile strength limit state and in 
Table 4 for the pullout limit state. Figures 5 and 6 show plots of β and Pf with depth for the tensile strength limit 
state and pullout limit state, respectively. The data plots correspond to the three levels of understanding 
discussed earlier. Note that for the tensile strength limit state, COVRn = 0 as explained earlier.  Superimposed 
on the figures are target reliability index values of β = 2.33 (Pf = 1/100), 3.09 (Pf = 1/1000) and 3.54 (Pf = 
1/5000). A minimum reliability index value of β = 2.33 is recommended for the internal limit states for MSE walls 
because these systems are highly strength redundant (Allen et al. 2005); if one layer fails the other layers can 
compensate. The larger target β values corresponding to Pf = 1/1000 and 1/5000 have been recommended for 
single pile shafts and footings, respectively.  

The following observations can be made from Tables 3 and 4 and the plots in Figures 5 and 6: 

1. As level of understanding increases, the level of safety described by β and Pf increases. 
2. The minimum target β = 2.33 is satisfied for all layers regardless of level of understanding. 
3. The lowest margins of safety for the tensile strength limit state are in the bottom half of the wall.  

Table 1. Material properties for example wall from Allen and Bathurst (2018) 

 

Parameter Value 

Soil friction angle, f (ο) 38 

Bulk soil unit weight, γ (kN/m3) 20.4 

Soil cohesion (kPa) 0 

Equivalent uniform surcharge pressure, S (m) 4.3 kPa 

Thickness of the facing column (m) 0.305 

Tributary vertical spacing of reinforcement layers, Sv (m) 

1 for the top layer; 

0.4 for the bottom layer; and 

0.6 for other layers 

Ultimate tensile strength, Tult (kN/m) 24 

Reduction factor, RF 3.6 

Allowable tensile load (strength) at end of design life, Tal (kN/m) 6.7 

Reinforcement stiffness, J (kN/m) 128 

Table 2. Summary of bias statistics and bias dependency values for load and resistance models for geogrid 
reinforced soil walls constructed with granular soil (from Bathurst et al. 2019b) 

Model Model 
equation 

Number 
of data 
points 

Mean of bias COV of bias Bias 
dependency Data source 

Load model 

(Allen and 
Bathurst 2015) 

Equation 5 96 µλQ = 0.96 COVλQ = 0.36 ρQ = 0.09 
Allen and 
Bathurst 
(2015) 

Pullout model 

(AASHTO 
2020) 

Equation 7 318 µλR = 2.23 COVλR = 0.55 ρR = -0.46 
Huang and 
Bathurst 
(2009) 

Tensile rupture 
(AASHTO 
2020) 

Equation 6 N/A µλR = 1.10 COVλR =  0.10 ρR = 0 Bathurst et al. 
(2011) 



 

4. The lowest margin of safety for the pullout limit state is for the layer at the top of the wall. 
5. For many of the layers, the computed margin of safety is very large and well beyond minimum levels 

recommended for non-redundant geotechnical foundation elements. 

Observations 3 and 4 are consistent with expectations by experienced MSE wall designers for walls with simple 
geometry and reinforcement arrangements as in this example. 

Figure 7 shows operational factor of safety plotted against nominal factor of safety for both limit states. The 
relationships are linear as expected from Equation 3. For both limit states the nominal factor of safety is large 
and the OFS is even larger. The true operational factor of safety is about 15% higher for the tensile strength 
limit state and larger by a factor of 2.3 for the pullout limit state. 

Figure 8 and Figure 9 show reliability index plotted against nominal factor of safety. The relationships are log-
linear as expected from Equation 4. As level of understanding increases, reliability index increases for the same 
nominal factor of safety. Even for the reinforcement layer with lowest nominal factor safety in Figure 8, the 
margin of safety in terms of reliability index is well above the minimum target value of β = 2.33 corresponding to 

 
Figure 5. Reliability index for tensile strength limit state (COVRn = 0) 

 

 
Figure 6. Reliability index for pullout limit state 

 



 

Pf = 1/100. For the pullout limit state, the data in Figure 9 show that the nominal factor of safety values are very 
large and the corresponding β values are even larger.  It can be concluded that for this example wall, there are 
adequate margins of safety for both limit states expressed in deterministic and probabilistically frameworks.  

 

5. CONCLUSIONS 

 

This paper explains simple probabilistic analysis and design for two internal stability limit states for geosynthetic 
MSE walls. The general approach uses a closed-form solution for reliability index which is easily implemented in 
a spreadsheet. While the calculations using this formulation can be done to the same practical accuracy using 

Table 3. Tensile strength limit state results for all reinforcement layers (COVRn = 0) 

 

Layer Depth, 
z (m) Qn (kN/m) Rn (kN/m) Fn OFS 

Reliability index, β 

Level of understanding 

High Typical Low 

COVQn = 0.1 COVQn = 0.2 COVQn = 0.3 

10 (Top) 0.7 1.0 6.7 6.8 7.8 5.51 4.98 4.43 

9 1.3 1.1 6.7 6.0 6.9 5.18 4.69 4.17 

8 1.9 1.5 6.7 4.6 5.3 4.49 4.06 3.63 

7 2.5 1.8 6.7 3.7 4.3 3.94 3.57 3.19 

6 3.1 2.1 6.7 3.1 3.6 3.48 3.16 2.83 

5 3.7 2.5 6.7 2.7 3.1 3.13 2.84 2.55 

4 4.3 2.5 6.7 2.7 3.1 3.13 2.84 2.55 

3 4.9 2.5 6.7 2.7 3.1 3.13 2.84 2.55 

2 5.5 2.5 6.7 2.7 3.1 3.13 2.84 2.55 

1 6.1 2.0 6.7 3.4 3.8 3.65 3.31 2.97 

 

 
Figure 7. Operational factor of safety versus nominal factor of safety 

 

 



 

conventional MC simulation, the advantage of the closed-form solution is that by inspection it can provide insight 
on how different statistical quantities influence the magnitude of β. A novel feature of the formulation is that it 
includes uncertainty in the choice of nominal values and variability in the underlying accuracy of the load and 
resistance models that appear in each limit state equation using bias statistics. The quantitative effects of 
selecting different COV of nominal values on β outcomes can be seen as an approach to inject human 
judgement into the quantitative assessment of probabilistic margins of safety.  

Due to space constraints, details on how bias statistics can be gathered and treated could not be presented. 
The reader is directed to previously cited papers for these details.  

The concepts in this paper are general and can be applied to any soil-structure interaction problem that can be 
expressed by a simple linear limit state performance function with one load term, and for which bias statistics 
are available.  

The general approach explained in this paper provides the MSE wall designer with a tool to make design 
decisions based on reliability index (or equivalently, probability of failure) which is strongly informative. 
Nevertheless, the general approach can also be viewed as a complementary approach to traditional factor of 
safety and LRFD methods for internal stability design of reinforced soil walls. 
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Figure 9. Reliability index versus nominal factor of safety for pullout limit state 

 
Table 4. Pullout limit state results for all reinforcement layers (COVRn = COVQn) 

 

Layer Depth, 
z (m) Qn (kN/m) Rn (kN/m) Fn OFS 

Reliability index, β 

Level of understanding 

High Typical Low 

COVQn = 0.1 COVQn = 0.2 COVQn = 0.3 

10 (Top) 0.7 4.4 26.0 5.9 13.6 4.12 3.77 3.26 

9 1.3 4.4 50.6 11.5 26.7 5.20 4.76 4.12 

8 1.9 6.2 81.2 13.2 30.7 5.43 4.97 4.30 

7 2.5 7.9 117.8 14.9 34.7 5.63 5.15 4.45 

6 3.1 9.6 160.3 16.6 38.6 5.80 5.31 4.59 

5 3.7 11.4 208.9 18.3 42.6 5.96 5.45 4.72 

4 4.3 13.1 263.3 20.0 46.6 6.10 5.59 4.83 

3 4.9 14.9 323.8 21.7 50.5 6.24 5.71 4.94 

2 5.5 16.6 390.2 23.5 54.5 6.36 5.82 5.03 

1 6.1 12.3 462.6 37.8 87.7 7.13 6.53 5.64 
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